Upper bounds and the supremum Suppose that $A \subset \mathbb{R}$ is a set of real numbers.

- M is an upper bound for A means that for all $a \in A$, $a \leq M$.

- s is the supremum (least upper bound) of A means that:
 - (i) s is an upper bound for A; and
 - (ii) if M is an upper bound for A, then $s \leq M$.

 - If we declare that $-\infty < x < \infty$ for every real number x, then every set in \mathbb{R} has a supremum.

Sequences A sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} is an infinite ordered list a_1, a_2, a_3, \ldots of real numbers (its terms).

- $\lim_{n \to \infty} a_n = L$ means: for all $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ so that if $n \geq N$, then $|a_n - L| < \varepsilon$.

 - This means that if we toss out more and more initial terms of the sequence, the rest eventually squeeze as close to L as we like.

 - A sequence doesn’t necessarily have a limit; but if it does, that limit is unique.

Series Recall that the value of a series $\sum_{n=n_0}^{\infty} a_n$ is defined as $\lim_{N \to \infty} \left[\sum_{n=n_0}^{N} a_n \right]$ (when that limit exists!).

- If this limit of partial sums exists, we call the series convergent; otherwise, we call it divergent.

- $\sum_{n=n_0}^{\infty} a_n$ is absolutely convergent means that $\sum_{n=n_0}^{\infty} |a_n|$ converges.

 - in this case, the series itself is convergent, and its sum is the same no matter how we rearrange its terms.

- If $\sum_{n=n_0}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$ (but not vice-versa!).

 - Consequence: if $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=n_0}^{\infty} a_n$ diverges (but also not vice-versa!).
Limits and continuity Let f be a real-valued function

- \(\lim_{x \to a} f(x) = L \) means that: for all \(\varepsilon > 0 \), there exists some \(\delta > 0 \) so that if \(0 < |x - a| < \delta \), then \(|f(x) - L| < \varepsilon \).
 - This means that as we look only at values of \(x \) closer and closer to (but not equal to) \(a \), the values \(f(x) \) squeeze as close as we like to \(L \).

- \(f \) is continuous at \(a \) means that \(\lim_{x \to a} f(x) = f(a) \), i.e., for all \(\varepsilon > 0 \), there exists some \(\delta > 0 \) so that if \(|x - a| < \delta \), then \(|f(x) - f(a)| < \varepsilon \).
 - This means that as we look only at values of \(x \) closer and closer to \(a \), the values \(f(x) \) squeeze as close as we like to \(f(a) \).

- \(f \) is continuous means that \(f \) is continuous at each point of its domain.

Sequences and series Let \((f_n)_{n \in \mathbb{N}}\) be sequence of real-valued functions having the same domain \(A \).

- \((f_n)\) converges to a function \(f \) pointwise means that for each \(x \in A \), \(\lim_{n \to \infty} f_n(x) = f(x) \), i.e., for all \(x \in A \) and for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) so that if \(n \geq N \), then \(|f_n(x) - f(x)| < \varepsilon \).
 - Note that for a given target distance \(\varepsilon \), the values of \(N \) needed at different points \(x \) can vary, so the rate of squeezing to \(f \) can vary from point to point along the domain. For this reason, concepts (limits, continuity, integrals, etc.) that depend on more than just the value of a function at one point don’t necessarily behave well when we just have pointwise convergence.

- \((f_n)\) converges to a function \(f \) uniformly means that: for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) so that for all \(x \in A \), if \(n \geq N \), then \(|f_n(x) - f(x)| < \varepsilon \).
 - Due to the reordering of quantifiers, for each target distance \(\varepsilon \), a single value of \(N \) will work for all points \(x \) in the domain simultaneously. As a result, this stronger sense of convergence lets us draw (and prove) conclusions about the limits, continuity, and integrals for the limit function \(f \) in terms of the corresponding properties of the functions in the sequence \((f_n)\).

- A series \(\sum_{n=n_0}^{\infty} f_n \) of functions is defined via partial sums, just as with series of real numbers.

The Weierstrass M-Test is a very useful tool for determining uniform convergence of series (and, in fact, sequences!) of functions:

If \(M = \sum_{n=n_0}^{\infty} M_n \) is a convergent series of nonnegative numbers,

and if \(|f_n(x)| \leq M_n \) for each \(x \in A \) and \(n \geq n_0 \),

then \(\sum_{n=n_0}^{\infty} |f_n| \) converges uniformly to some function \(f \), and \(f(x) \leq M \) for all \(x \in A \).

- Note that this allows us to conclude that \(\sum_{n=n_0}^{\infty} f_n \) is uniformly convergent to some function \(f \) with \(|f(x)| \leq M \) for all \(x \in A \).